Semantic Parsing on Freebase from Question-Answer Pairs

نویسندگان

  • Jonathan Berant
  • Andrew Chou
  • Roy Frostig
  • Percy Liang
چکیده

In this paper, we train a semantic parser that scales up to Freebase. Instead of relying on annotated logical forms, which is especially expensive to obtain at large scale, we learn from question-answer pairs. The main challenge in this setting is narrowing down the huge number of possible logical predicates for a given question. We tackle this problem in two ways: First, we build a coarse mapping from phrases to predicates using a knowledge base and a large text corpus. Second, we use a bridging operation to generate additional predicates based on neighboring predicates. On the dataset of Cai and Yates (2013), despite not having annotated logical forms, our system outperforms their state-of-the-art parser. Additionally, we collected a more realistic and challenging dataset of question-answer pairs and improves over a natural baseline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Semantic Parsing without Question-Answer Pairs

In this paper we introduce a novel semantic parsing approach to query Freebase in natural language without requiring manual annotations or question-answer pairs. Our key insight is to represent natural language via semantic graphs whose topology shares many commonalities with Freebase. Given this representation, we conceptualize semantic parsing as a graph matching problem. Our model converts s...

متن کامل

Scaling Semantic Parsers with On-the-Fly Ontology Matching

We consider the challenge of learning semantic parsers that scale to large, open-domain problems, such as question answering with Freebase. In such settings, the sentences cover a wide variety of topics and include many phrases whose meaning is difficult to represent in a fixed target ontology. For example, even simple phrases such as ‘daughter’ and ‘number of people living in’ cannot be direct...

متن کامل

Information Extraction over Structured Data: Question Answering with Freebase

Answering natural language questions using the Freebase knowledge base has recently been explored as a platform for advancing the state of the art in open domain semantic parsing. Those efforts map questions to sophisticated meaning representations that are then attempted to be matched against viable answer candidates in the knowledge base. Here we show that relatively modest information extrac...

متن کامل

Paraphrase Generation from Latent-Variable PCFGs for Semantic Parsing

One of the limitations of semantic parsing approaches to open-domain question answering is the lexicosyntactic gap between natural language questions and knowledge base entries – there are many ways to ask a question, all with the same answer. In this paper we propose to bridge this gap by generating paraphrases of the input question with the goal that at least one of them will be correctly map...

متن کامل

Open-Vocabulary Semantic Parsing with both Distributional Statistics and Formal Knowledge

Traditional semantic parsers map language onto compositional, executable queries in a fixed schema. This mapping allows them to effectively leverage the information contained in large, formal knowledge bases (KBs, e.g., Freebase) to answer questions, but it is also fundamentally limiting— these semantic parsers can only assign meaning to language that falls within the KB’s manually-produced sch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013